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The US Food and Drug Administration (FDA) has been actively promoting the use of real-world data

(RWD) in drug development. RWD can generate important real-world evidence reflecting the real-world

clinical environment where the treatments are used. Meanwhile, artificial intelligence (AI), especially

machine- and deep-learning (ML/DL) methods, have been increasingly used across many stages of the

drug development process. Advancements in AI have also provided new strategies to analyze large,

multidimensional RWD. Thus, we conducted a rapid review of articles from the past 20 years, to provide

an overview of the drug development studies that use both AI and RWD. We found that the most popular

applications were adverse event detection, trial recruitment, and drug repurposing. Here, we also discuss

current research gaps and future opportunities.
Introduction
Drug development is the process of bringing a new drug molecule

into clinical practice; in its broadest definition, it includes all

stages from the basic research of finding a suitable molecular

target to large-scale Phase III clinical studies that support the

commercial launch of the drug to post-market pharmacosurveil-

lance and drug-repurposing studies [1,2]. During the drug devel-

opment process, chemical entities that have the potential to

become therapeutic agents are identified and thoroughly tested,

and the entire process is lengthy and costly. It is estimated that, for

every new drug brought to the market, it typically costs billions of

US dollars and >10 years of work [3,4]. Therefore, strategies that

can facilitate and accelerate the drug development process are of

high interest.

Recently, the FDA has been actively promoting the use of RWD for

drug development [5,6]. The term ‘RWD’ refers to data collected

from sources outside of conventional research settings, including

electronic health records (EHRs), administrative claims, and billing

data, among others [5–7]. These RWD often contain detailed patient
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information, such as disease status, treatment, treatment adherence

and outcomes, comorbidities, and concurrent treatments that are

tracked longitudinally. The information generated from RWD can

provide important real-world evidence to inform therapeutic devel-

opment, outcomes research, patient care, safety surveillance, and

comparative effectiveness studies [8]. More importantly, the use of

RWD allows clinical researchers and regulatory agencies to answer

questions more efficiently, saving time and money while yielding

answers that are generalizable to the broader population. Over the

past decade, there has been an increased uptake of EHR systems in

the USA. These technological advances and policy changes in the

USA have created a fertile ground with increasing opportunities to

use RWD to facilitate drug development. Thus, the FDA hasprovided

guidance on the use of EHR data in clinical investigations [5] as well

as guidance on incorporating RWD into regulatory submissions to

the FDA [9].

By contrast, the field of AI, including ML/DL, has moved from

largely theoretical studies to real-world applications thanks to

both the exponential growth of computing power and advances

in AI methods [10]. AI has been widely used in many stages of the

drug development process to identify novel targets [11], increase

understanding of disease mechanisms [12], and develop new
1359-6446/ã 2020 Elsevier Ltd. All rights reserved.
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biomarkers [13], among others. Many pharmaceutical companies

have begun to invest in resources, technologies, and services,

especially in generating and assembling data sets to support re-

search in AI and ML/DL, and many of those data sets are from RWD

sources. There is an emerging need for an overview of the inter-

section between AI and RWD in current drug development studies

to describe the current trends, identify existing research gaps, and

provide insights into potential future directions. Thus, we con-

ducted a rapid review summarizing published articles related to

the intersection of AI, RWD, and drug development over the past

20 years. Our specific aims were to identify current trends in using

AI and RWD in drug development studies and, subsequently, any

challenges and opportunities?

Literature search
Definitions of drug development, AI, and RWD
The drug development process, according to the FDA’s definition

[14], has four stages: (i) drug discovery: the discovery of new

therapeutic agents through the understanding of disease mecha-

nisms and properties of molecular compounds (or other technol-

ogies); (ii) preclinical research: laboratory and animal testing to

answer questions about the safety of the new drug targets; (iii)

clinical research: different stages of clinical trials to test the new

drug on humans to assess its safety and efficacy; and (iv) post-

marketing research: pharmacosurveillance and comparative effec-

tiveness studies.

The definition of AI methods is less clear and varies in computer

science and informatics literature. In this rapid review, we chose

the definition ‘the use of complex algorithms and software to

emulate human cognition in the analysis of complicated medical

data, and analyse the relationships between prevention or treat-

ment techniques and patient outcomes.’ [15] To be more concrete,

the specific AI-related methods we considered include ML and DL

(a subbranch of ML), which are in general accepted by different

research communities as AI tasks [16].

In terms of RWD, the FDA defines RWD as ‘the data relating to

patient health status and/or the delivery of health care routinely

collected from a variety of sources’, which include patient EHRs

and claims data, as well as other patient-generated health data,

such as those generated in home-use care settings and data from

mobile devices that can inform health status [7,8]. Here, because

we aim to understand RWD that can be used to support drug

development, we focus on RWD sources that provide clinical data

not collected in interventional, controlled, experimental clinical

research settings [e.g., randomized controlled trials (RCTs)], which

include data generated not only from the delivery of routine care

(e.g., EHR, claims databases, or disease registries) but also from

study designs that can generate RWD (e.g., observational studies

and pragmatic clinical trials) [17]. We exclude RWD that are

generated from personal devices, such as smartphones and activity

trackers.

Eligibility criteria
The inclusion criteria for our review were: (i) studies using RWD as

data sources; (ii) studies using AI methods for statistical analysis or

data mining; and (iii) studies focused on the development of drugs.

As a rapid review, we first focused on identifying existing review

articles.
Search strategy and study selection
We performed a literature search through PubMed to identify

relevant review articles published until July 1, 2020. In our search

strategy, we considered different combinations of search keywords

dictated by the definitions of RWD, AI, and drug development that

we chose to focus on. Our search query included three distinct sets

of keywords for RWD, AI, and different stages of the drug devel-

opment process, respectively. For completeness, we included key-

words such as ‘natural language processing’ in the AI keywords,

because state-of-the-art models for these NLP tasks are often

ML/DL methods. The full search query and the complete list of

keywords are in Table S1 in the supplemental information online.

Following best practice for rapid reviews [18,19], we first

restricted our search to identify existing review articles for inclu-

sion. We then manually identified the specific AI and RWD

applications described in these reviews. Next, based on the identi-

fied applications, we performed a second round of literature search

to look for their detailed approaches, including data source, data

type, and analytical methods used. Figure 1 summarizes the overall

search and screening process.

Current progress in the literature
In the first round of literature search, a total of 23 review articles

were identified; among them, 16 met our inclusion criteria. Based

on these review papers, we first highlight the key steps in the drug

development process and then summarize the identified research

topics in each step (Fig. 2a). We then summarize the applications

that used RWD (Fig. 2b) and AI + RWD (Fig. 2c) to address these

research questions.

Drug development process and applications of real-world data
The first step in the drug development process is the discovery of

potential therapeutic agents, where researchers investigate the

interactions among different molecules, genes, and proteins,

and then identify which molecules have high potential with

the goal of finding novel targets, biomarkers, and compounds

[14]. Some of these goals can be achieved using RWD applications.

For example, in a recent review paper [17], Singh et al. identified 20

studies that used RWD to facilitate drug discovery and clinical

research. Among them, 16 identified or validated new phenotypes,

disease markers, and biomarkers for patient identification and

stratification.

The next step is preclinical testing, which includes both in vitro

and in vivo testing. In this stage, the safety of drug molecules is

tested in test tubes, living cell cultures, and animal models. This is

a crucial step because the drug development can only move into

human trials with extensive data on safety in preclinical research.

In the review papers we included, there were no studies identified

for this stage.

After the preclinical testing, once the Investigational New Drug

(IND) application is approved, drug development moves into

clinical research stages. There are three phases of clinical studies

before the drug can be submitted for marketing approval. The key

issue that needs to be addressed in this step is to evaluate both the

safety and efficacy of the new agents in the target human popula-

tion [20]. RCTs are still the gold standard to generate clinical

evidence; however, RWD have become an important data source

for RCTs to understand how the developed treatments are being
www.drugdiscoverytoday.com 1257
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FIGURE 1

The overall search and screening process.
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used in real-world settings. For example, Lai et al. examined the

impact of using EHRs for clinical research recruitment in a review

of 13 research articles [21]. They found that the automation in

screening and patient identification could contribute to higher

recruitment yield and reduced workload.

After a drug is available on the market, the drug developers are

required to submit regular reports detailing adverse events (AEs)

associated with the drug [14]. In addition to AE reporting, obser-

vational studies and pragmatic clinical trials are also conducted

using RWD to evaluate the safety of the drug in real-world settings.

For pharmacosurveillance, RWD has gained significant attention

in recent years. For example, in 2012, Warrer et al. conducted a

review on studies that used text-mining techniques on narrative

documents to investigate AEs [22], where only seven studies were

identified. In a more recent review by Luo et al. in 2017 on the same

topic, 48 studies were identified [23]. These studies showed that
1258 www.drugdiscoverytoday.com
text-mining techniques, ranging from simple free-text searching

to more advanced ML/DL-based natural language processing (NLP)

methods, can be powerful in AE detection, given that AEs are more

extensively documented in EHR narratives.

Applications of AI methods using RWD in the drug development
process
Across the different drug development stages, few studies used AI

on RWD, and most were found in the clinical or postmarketing

stage. Three main types of study used AI on RWD (Fig. 2c): trial

recruitment optimization, AE detection, and drug repurposing.

Therefore, we conducted a second literature search focusing on

individual research studies of these three main applications

(Fig. 1). Similar to the first literature search, we screened all studies

on these three topics using keywords related to AI and RWD, as

detailed earlier. A total of 65 research studies were included after
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FIGURE 2

Identified artificial intelligence (AI) and real-world data (RWD) applications across the different stages in the drug development process. Abbreviations: EWAS,
epigenome-wide association study; GWAS, genome-wide association study; ML, machine learning.
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title/abstract and full-text screening. In Table 1, we summarize

these studies into subcategories with examples [24–28]. In Figure 3,

we show the increasing trend of studies that use AI methods with

RWD in the drug development process over the past 15 years.

Overall, we observed a steady increase in the total number of

studies. In particular, the number of studies focusing on AE

detection has exploded and many focused on using NLP methods

to extract AE from free-text narratives, likely because of advances

in DL-based NLP methods that achieved state-of-the-art perfor-

mance [29]. Nevertheless, we also observed more studies that tried
TABLE 1

The main categories of AI and RWD applications in drug developm

Applications Subcategories 

AE (adverse event) detection Mining clinical notes using NLP (natural
language processing)
Mining structured EHR (elctronic health
record) data

Recruitment optimization Electronic recruitment through EHR 

Eligible population identification/
prescreening

Clinical drug repurposing 
to leverage AI methods on RWD for optimizing clinical trial

recruitments. Moreover, clinical drug repurposing has emerged

as a new application area in the drug development process.

Figure 4 summarizes the numbers and percentages of different

data sources, data types, and AI methods being used in the 65

studies. Given the overwhelming number of studies used AI-driven

NLP methods, we separated NLP studies from other ML/DL studies.

State-of-the-art NLP methods often leverage ML and DL

approaches such as BERT [29,30]. Overall, EHR data were the

most popular data source, especially unstructured clinical notes.
ent

Examples Refs

DL-based NLP to detect AEs in clinical notes extracted from EHR [24]

Predictive modeling of structured EHRs for AE detection [25]

Electronic recruitment integrated into EHR workflow that sends
electronic messages to recruit eligible patients

[26,27]

Automated review of EHR to identify eligible population using
NLP

[28]

Comparison between diabetic and nondiabetic patients with
cancer showed that use of metformin was associated with
decreased mortality after cancer diagnosis

[34]

www.drugdiscoverytoday.com 1259
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FIGURE 3

Number of original studies with artificial intelligence (AI) methods using real-world data (RWD) in the drug development process over the years.
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FIGURE 4

Breakdown of real-world data sources, data types, and artificial intelligence (AI) methods used in the identified applications across the drug development
process. Given the overwhelming number of studies used AI-driven natural language processing (NLP) methods, we separated NLP studies from other machine/
deep-learning (ML/DL) studies.
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Consequently, a large number of studies have focused on devel-

oping or using NLP methods. Among the 55 studies on AE detec-

tion, 41 (74.5%) were NLP related. Some studies developed a NLP

system to extract information from clinical notes to identify AEs

related to the administration of medication. For example, Yang

et al. developed a Long Short-Term Memory (LSTM)-based DL

model to detect medication, AEs, and their relations from clinical

text [31]. In other studies, the AEs and associated attributes (e.g.,

severity) extracted from the NLP pipeline were further fed into a

downstream model to assess association between AEs and other

health outcomes. For example, Zhang et al. first used NLP to

identify patients who had AEs related to statin therapy, and then

examined the relationship between continuation of statin therapy

and incidence of death and cardiovascular events among these

patients [32]. Meanwhile, most studies on recruitment optimiza-

tion (75% of studies included) also utilized clinical notes from EHR

data, and attempted to identify eligible populations for trials using

information extracted from NLP. For example, Spasic et al. used an

NLP system that combined rule-based knowledge infusion and ML

algorithms to analyze longitudinal patient records to determine

whether the corresponding patients met given eligibility criteria

for clinical trials [33]. Finally, of the two articles on clinical drug

repurposing [34,35], one used NLP methods. In work by Xu et al.,

automated informatics methods, including NLP, were used on

EHR data to identify patient cohorts and medication information

[34]; the authors then assessed whether metformin is a potential

drug that can be repurposed to cancer treatment. In the other

clinical drug-repurposing study, Kuang et al. developed a ML-based

drug repurposing approach, called baseline regularization, to pre-

dict the effects of drugs on different physical measurements, such

as fasting blood glucose [35], to identify potential repurposing.

Although there is a wealth of literature on drug repurposing using

EHRs, few studies have used advanced AI methods, with most

using traditional statistical approaches, such as Cox regression

[36].

Current trends in AI methods on RWD in drug development
research
We identified 16 review articles related to the use of AI methods on

RWD published over the past 20 years and an increasing number of

original studies in three main application areas: AE detection,

recruitment optimization, and drug repurposing.

The most common application area that used AI on RWD was

for AE detection, primarily focusing on using NLP on unstruc-

tured clinical notes from EHR. The reasons for such a rising

popularity are twofold: (i) the abundance of textual information

in RWD, especially EHRs; and (ii) the rapid advancement in NLP

methods, especially those new DL-based models with state-of-

the-art performance. In fact, >80% of the clinical information in

EHR is documented in free-text [37], which makes text mining an

ideal tool. EHRs have been particularly useful for investigating

AEs and other therapeutic effects because of their continuous and

longitudinal nature of clinically relevant outcomes and medica-

tion exposures.

We also identified several studies that focused on recruitment

optimization and drug repurposing. These tasks are suitable for

the use of AI and RWD because: (i) the extensive collections of

RWD provide sufficient sample sizes to identify individuals who
meet recruitment criteria; (ii) the longitudinal detailed medical

histories of patients captured in these RWD sources make it

possible for researchers to identify drugs that might be effective

for indications other than the primary use; (iii) AI and data-

driven approaches could potentially minimize the selection bias

because they do not rely on researchers’ predetermined assump-

tions, and, thus, are able to identify novel associations that were

previously unknown; and (iv) modern AI methods are capable of

handling the high dimensionality and complexity of RWD as

well as the complex combinations and interactions of RWD

variables.

Challenges and future directions
Challenges of using AI and RWD in the drug development
studies
First, one major challenge is the quality of the data in many RWD

sources. For example, information heterogeneity has been

reported in EHRs because clinicians do not always document

the care in the same way [38]. Such variance makes it difficult

to extract the same information (e.g., outcome measures) consis-

tently. Other data-inconsistency issues, such as missing data and

selection bias, also present significant challenges to researchers

because data collection in real-world settings is usually heteroge-

neous and unstandardized. Second, most of the studies we identi-

fied focused on prediction or classification tasks and often

overemphasized model performance rather than learning the

casual effects [39,40]. Furthermore, most of these existing studies

do not integrate a priori causal knowledge to guide the learning

process and, as a result, no causal relationship can be estimated.

Third, the transportability and interpretability of these studies also

need to be further assessed. External validations using indepen-

dent sources to ensure the findings are representative and gener-

alizable are recommended, but such validation studies are often

difficult to execute for multiple reasons, including: (i) sharing of

individual-level clinical data remains difficult because of not only

ethical and legal issues, but also market competition concerns; and

(ii) the lack of standardization and harmonization across the

different data sources (e.g., inconsistent outcome measures), mak-

ing replication studies unattainable.

Nevertheless, significant advancements have also been made

to tackle these challenges. First, advances in AI methods, espe-

cially in DL, have prompted studies that consider heterogeneous

data sources and types (e.g., clinical data, imaging, -omics data,

and knowledge bases, among others) in one coherent model. Li

et al. developed a DL model based on recurrent neural networks to

learn representation and temporal dynamics of longitudinal

cognitive measures of individual subjects and combined them

with baseline hippocampal magnetic resonance imaging (MRI)

measures to build a prognostic model of Alzheimer’s disease

dementia progression [41]. Other developments in DL include

the ability to handle not only the temporal order of clinical

events, but also the long-term dependencies among the events

as well as the time-varying effects of the covariates. For example,

time-aware LSTM (T-LSTM) incorporates elapsed time informa-

tion into the standard LSTM architecture to handle irregular time

intervals in longitudinal EHR data [42] to learn disease subphe-

notypes. BEHRT, a new deep neural sequence transduction model

for prediction of interpretable personalized risk using EHR data,
www.drugdiscoverytoday.com 1261
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various forms of sequential concept and enabled the incorpo-

ration of multiple heterogeneous concepts (e.g., diagnosis, medi-

cation, measurements, and more) to further improve the

accuracy of its predictions [43]. In NLP, new methods have been

developed that can incorporate factual medical knowledge from

existing ontologies/knowledge bases (e.g., the Unified Medical

Language System) to further improve the performance of NLP

tasks, such as for clinical concept extraction [44].

Second, the use of causal modeling tools in AI, such as causal

diagrams, could provide important additions to the implemen-

tations of causal inference using RWD. Causal modeling can

also lead to improvements in the interpretability and adapt-

ability of AI models in these drug development studies [45].

This concept of causal AI has been applied successfully in

public health studies, such as the identification of occupation-

al risk factors [46,47] and the prediction of diarrhea incidence

in children [48], among others, and could be used in future

drug development research, such as the ‘target trial’ [49]

framework aiming to establish causal treatment effects using

RWD without conducting RCTs. Additionally, the emerging of

explainable AI (XAI) could help to interpret and understand AI

decisions. The XAI models use different mechanisms (e.g.,

feature interaction and importance, knowledge distillation,

and rule extraction) on top of ML/DL models to generate

interpretable  outputs, such as variable ranking [50], which

ultimately help us understand  why an AI system makes a

certain decision. XAI models are particular useful for tasks

such as drug repurposing because these tasks are generating

hypotheses for which plausible explanations are crucial.

Finally, the establishment of large research networks, such

as the national Patient-Centered  Clinical Research Network

(PCORnet) [51], Observational Health Data Sciences and In-

formatics (OHDSI) consortium [52], and the Clinical and

Translational Service Award Accrual to Clinical Trails (CTSA

ACT) network [53], facilitate the sharing of RWD. Each of these

large networks comprises multiple sites across the USA and

internationally, and the same data infrastructure (i.e., the

same ontologies and common data models) are being used

in each network. RWD from these networks represent a diverse

set of patients and institutions and provide the opportunities

to conduct large populational studies to understand factors

that contribute to health and illness in a heterogeneous and

real-world setting. In addition, de-identification strategies,

such as those for automated de-identification of massive clini-

cal notes [54], have been widely applied to facilitate data

sharing across different institutions. Furthermore, privacy-

preserving record-linkage tools have showed high precisions

in linking and deduplicating patient records without sharing

of protected identifiable information [55]. Although these de-

identification strategies might not be applicable for every data

type, they provide capabilities to facilitate data sharing across

sites and integration of different data sources.

Future applications
There are several other scenarios where RWD and AI methods

might be useful in the drug development process. For

example, traditionally, clinical trial simulation (CTS) studies use
1262 www.drugdiscoverytoday.com
computerized simulation methods on virtual populations to test

different trial designs before resources are invested in conducting

the actual clinical trial [56]. CTS that incorporates RWD can

simulate its virtual populations more realistically. Furthermore,

recent developments in the ‘target trial’ framework, emulating

hypothetical trials with RWD, enable us to identify unbiased

initiation of exposures and reach an unbiased estimation of the

casual relationships [49]. Combing the concept of modern trial

emulation and the traditional CTS approaches, a trial simulation

framework with RWD that can systematically test the different

assumptions of a clinical trial to inform future trial design and

produce causal results from RWD will be of high interest.

To facilitate the discovery of new drug targets, another

emerging trend is the linkage of EHRs with other data sources,

such as biobanking data, to study drug–phenotype and drug–

gene interactions. For example, researchers from the Vander-

bilt Electronic Systems for Pharmacogenomic Assessment

(VESPA) Project [57], demonstrated that EHR-based biobanks

could be cost-effective tools for establishing disease and drug

associations, because such applications allow the reuse of

biological samples for multiple studies without incremental

collection, extraction, or processing costs, and the integration

with EHR system allows for centralized de-identification and

phenotype annotations.

Finally, we highlight the importance of the clinical and trans-

lational science life cycle in the drug development process. For

example, the drug-repurposing signals identified from popula-

tion-based studies will need to be looped back to the preclinical

and clinical study stages for further validation and evaluation

[58].

Limitations of our work
First, as a rapid review, our work is not comprehensive, but has

provided a rapid and necessary summary and discussion of the

topic. Second, our definition of AI is restricted to ML/DL methods

(and their applications in NLP), and our definition of RWD is

constrained to clinical data generated from the delivery of routine

care (e.g., EHRs and claims data). Therefore, studies using AI

methods such as automation and studies using data from personal

devices, such as social media and activity trackers, were not

included in our review. For example, social media data have shown

promise in identifying AEs, although the noisy nature of social

media data remains as a challenge [59,60]. These computational

methods and data sources could provide additional insights into

the drug development process and should be revisited in a future

review.

Concluding remarks
The use of AI and RWD has been emerging but focused on limited

areas across several stages of the drug development process. Most

AI studies focused on AE detection from clinical narratives in EHRs

and a few studies explored applications for trial recruitment op-

timization and clinical drug repurposing. Benefitting from the

detailed, longitudinal, multidimensional large collections of

RWD and powerful AI algorithms, the use of AI methods on

RWD provides golden opportunities in drug development, espe-

cially in identifying previously unknown associations and gener-

ating new hypotheses. Nevertheless, several current research gaps
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and challenges exist, such as issues in data quality, the difficult of

sharing clinical data, and the lack of interpretability and trans-

portability in AI models. We have highlighted examples of latest

advancements in AI and data science that could address these

challenges. For example, the increasing capability of DL models

that can handle longitudinal and heterogeneous RWD and the

raise of causal AI provide new research opportunities in drug

development that can benefit from the combined use of AI and

RWD.
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